Features

• Multiply-by-1 to Multiply-by-8, on 8 output jacks
 • Maximum Multiply-by-32 with optional breakout panel
 • Five Slipped/Shuffled/Skipped clock outputs (S3, S4, S5, S6, S8). Each is based on a multiple of the input clock frequency (x3, x4, x5, x6, and x8, respectively)
 • Three steady clock outputs (x1, x2, and x8), which are not effected by Slip/Shuffle/Skip effects

• CV Rotate jack to shift multiply-by amount on all jacks

• CV Slip causes particular beats to land ahead in time

• Optional breakout panel: (see separate manual)
 • CV Shuffle jack and knob selects which beats are "slipped" by CV Slip (default=every other beat)
 • CV Pulse Width jack and knob controls width of output pulses (default=50%)
 • CV Skip jack and knob omits certain beats in a pattern (default=no skip)
 • Re-sync CV Trigger input
 • Additional CV Rotate and CV Slip jacks on breakout panel
 • "4x Fast" CV jack and switch speeds up multiply-by amounts
 • "Mute" CV jack and switch stops any more beats from starting

• UART header
 • Connects to optional MIDI breakout panel (forthcoming)
 • Arduino-compatible

• ISP header
 • Connects to in-circuit programmer such as AVR ISP MKII for reprogramming code

• Maximum input frequency 3kHz

• 4 H.P. Eurorack module

• 60mA power draw (+/-12V or +/-15V)

Jacks

• Clock Input (3.5V to 15V clock, rising edge triggered)
• CV Rotate (0V to +5.1V input)
• CV Slip (0V to +5.1V input)
• Multiplied Clock Outputs (8 jacks):
 • Multiply-by (1+R)
 • Multiply-by (2+R) and slip/shuffle/skip
 • Multiply-by (3+R) and slip/shuffle/skip
 • Multiply-by (4+R) and slip/shuffle/skip
 • Multiply-by (5+R) and slip/shuffle/skip
 • Multiply-by (6+R) and slip/shuffle/skip
 • Multiply-by (7+R) and slip/shuffle/skip
 • Multiply-by (8+R)
...where R is the CV Rotation (0 to 7)
Jumpers

There are six jumpers on the back, and all jumpers should normally be in place unless the breakout board is in use. The bottom three pins (one single pin, and a row of two pins) do not get a jumper. The six jumpers set the extra features to their defaults (CV Shuffle, Skip, PWM, Fast, Faster). If the jumpers are removed, the various settings will “float” and change randomly. Beware that running more than 5V, or less than 0V into any of these pins will permanently damage your chip.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0V=Normal, 5V=Faster</td>
</tr>
<tr>
<td>8</td>
<td>0V=Normal, 5V=Fast</td>
</tr>
<tr>
<td>3</td>
<td>0-5V Pulse Width CV</td>
</tr>
<tr>
<td>4</td>
<td>0-5V: Skip CV</td>
</tr>
<tr>
<td>5</td>
<td>5V: Resync Trigger input</td>
</tr>
<tr>
<td>6</td>
<td>0-5V: Shuffle CV</td>
</tr>
<tr>
<td>9</td>
<td>+12/15V (mains supply)</td>
</tr>
<tr>
<td>10</td>
<td>Rotate CV</td>
</tr>
</tbody>
</table>

Operation

The SCM measures the time between the previous two pulses, and uses that value to calculate the frequency of the clock signals on the output jacks. Applying a steady clock will produce an output clock of equal frequency on the x1 jack, and a clock of double the frequency on the x2 jack... and a clock of eight times the frequency on the x8 jack.

Since the SCM only remembers the time between the previous two pulses, you can simply “tap” it twice and it will run at that tempo indefinitely. There is inherently some tempo drift and human error in taking this “tap tempo” approach if your goal is to synchronize the SCM to another clock, so it’s recommended to use a common input clock when possible if sync’ing tempos is desired. The SCM can handle rapidly changing clock signals, including complex waveforms that cross the 3.5V boundary at erratic intervals.

Three of the jacks will always produce regular clock pulses that are multiples of the input clock: x1, x2, and x8. These jacks are not effected by CV Slip or the breakout panel’s Shuffle and Skip effects.

The other five jacks produce a clocks that are also multiples of the input clock, but these jack will “rag” the beat (Slip and Shuffle), as well as drop some beats out (Skip): S3, S4, S5, S6, S8.

Notice there is no S7 jack, this tempo pattern can only be produced by applying a CV to the Rotate jack. For example, looking at the Voltage at CV Rotate Jack table below, we see that about 1.0V on the jack will make the S6 jack output S7, or applying >5.1V will make the S8 jack output the S7 pattern. The reason for leaving out S7 was to make room for both S8 and x8: playing a non-slipped and a slipped clock at the same time results in some fascinating phasing and variable-shifting effects, especially if CV Slip is modulated slowly and both tempos are heard side-by-side.

Typically, the outputs will patch to trigger-able or gate-able modules (drum modules, ADSR envelope/transient generators, step sequencer clock input, etc..), but the SCM can also operate in the audio frequency range, thus crudely stepping pitch upward.

Voltage at CV Rotate Jack

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0V</td>
<td>S6</td>
</tr>
<tr>
<td>>5.1V</td>
<td>S7</td>
</tr>
</tbody>
</table>

CLOCKER PCB 1.0.2
CV Slip

Slip is an effect where every “n” beats are shifted forward in time. By default, “n” is 2, so every other beat lands “late”: beats 2, 4, 6, etc... (The value of “n” can be changed by the Shuffle parameter, which is only controllable by the breakout panel.) The amount each beat is late is set by CV Slip.

CV Slip operates between 0V and +5V. Zero volts is no slippage (0%) and 5V is about 90% slippage. When Slip is at 0V, the “S” jacks act as straight “x” jacks (that is, there is no slipping/shuffling of the beat). Applying a small amount of CV to Slip causes every other beat to land a little bit late. Applying the maximum CV (5V) causes every other beat to land right before the next beat.

With no jack plugged into the CV Slip, the jack is normalized to about 2.5V. This translates to 50% slippage, which means every other beat is played about halfway where it normally would fall and where the next beat normally falls.

Internally, there’s a counter that keeps track of whether each beat should be slipped or not. This counter resets itself on each input clock pulse. For example, if we have a steady regular clock input and we’re slipping every other beat, then on the S5 jack beats 2 and 4 will be late. Then before beat 6 is supposed to happen, we have an input clock happening, so the counter resets and beat 6 becomes beat 1 and is on time. So then beats 7 and 9 are late. The Slippage diagram illustrates this interesting rhythm pattern.

Note that with the breakout panel, Pulse Width effects how much Slippage can occur. With very wide pulses, there's very little time between the end of a beat and the start of the next beat— therefore there's very little room to push the beat forward without encroaching upon the next beat. Therefore, the shorter the PW setting, the more dramatic the CV Slip effect.

Only the five “S” jacks are effected by CV Slip, no matter what the rotation is. That is, the slippage effect is linked to particular jacks and the effect doesn't rotate with the multiply-by amounts.

See the pulse diagram on the last page to see how Slipping looks on a scope.

CV Rotation

By applying a CV signal to the CV Rotate jack, the clock multiples will rotate throughout the output jacks (see table).

The “S” jacks will always output a shuffled/slipped/skipped clock, and the “x” jacks will always output straight clock signals, no matter how the clock signals are rotated.

For more explanation of Rotation, see the Rotating Clock Divider manual– the rotation effect is the same for the SCM.

Multiply-by amounts at each jack

<table>
<thead>
<tr>
<th>Jacks</th>
<th>Voltage at CV Rotate Jack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1.0V</td>
</tr>
<tr>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>x2</td>
<td>x2</td>
</tr>
<tr>
<td>S3</td>
<td>S3</td>
</tr>
<tr>
<td>S4</td>
<td>S4</td>
</tr>
<tr>
<td>S5</td>
<td>S5</td>
</tr>
<tr>
<td>S6</td>
<td>S6</td>
</tr>
<tr>
<td>S8</td>
<td>S8</td>
</tr>
<tr>
<td>x3</td>
<td>x8</td>
</tr>
</tbody>
</table>

See the separate SCM Breakout manual for details on using CV Shuffle, CV Skip, CV Pulse Width, 4x Fast, and Mute
4ms Shuffling Clock Multiplier
Slippage Timing Diagrams

No Slip (0V applied to CV Slip jack). 50% Pulse Width (default)

Initial pulse

Second pulse
(SCM starts multiplying)

Third pulse
(is in time with first two pulses,
so tempo remains the same)

No fourth pulse!
SCM continues to output clocks
at the same tempo because the
time between the last two input
clock pulses has not changed.

“Fifth” pulse
Time between last two input clock
pulses is twice as much,
so SCM halves the tempo

90% slip (about 5V on CV Slip jack). Shuffle set to default (every other pulse). 50% Pulse Width (default)

Clock in

x1

x2

S3

S4

S5

S6

S7

S8

x8